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ABSTRACT 

The effects of flow separation on the aeroelastic characteristics of the Saturn-IB and 

Saturn-V launch vehicles with an Apollo payload have been investigated. The steady and 

unsteady aerodynamic loads over these vehicles a re  dominated by separated flow. 

The results of a single-degree-of-freedom, quasi-steady analysis of the first three, 

free-free , body bending modes indicate that both vehicles a re  aerodynamically damped 

over the high-dynamic-pressure portions of their trajectories ( 0 . 8  5 M 5 2 .0 ) .  Thus, 

one can conclude that both vehicles will be aerodynamically damped over the entire 

ascent Mach-number range. 

w 
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SUMMARY 

Certain geometric features common to many manned boosters, such a s  tower-mounted 

escape rockets and steep interstage flares, a r e  sources of flow separation that may 

dominate the vehicle dynamics in the transonic Mach-number range where the dynamic 

pressure is large. Such is the case with the Saturn-Apollo manned boosters. A 
quasi-steady analysis technique, which uses the static experimental load distribution 

as an input, has been used to obtain the aerodynamic damping for the first three 
bending modes of the Saturn-IB and Saturn-V vehicles. 

The analytical results indicate that the Saturn-IB and Saturn-V vehicles are 

aerodynamically damped over the critical Mach-number range (0.8 5 M 5 2 .0 ) .  There- 

fore, one may expect both vehicles to be damped over the entire ascent Mach-number 

range. An analysis of an additional Saturn I - Apollo configuration (flights SA-8 and 

SA-9) is documented in Appendix B. Positive aerodynamic damping is predicted also 

for  this vehicle. 
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Section 1 

INTRODUCTION 

d spa ters being considered for mann -flight missions in the 

near future a re  long, flexible vehicles with aerodynamic characteristics that a re  

dominated by separated flow in the transonic Mach number regime. Large, highly non- 

linear aerodynamic loads that occur in the high-dynamic-pressure region of the trajec- 
tory are characteristic of flow separation. For an elastic vehicle, the designer must 
consider the possibility of structural-aerodynamic coupling that could cause failure 

of the structure. The Saturn-Apollo family of manned booster vehicles dramatically 

illustrates the effects of flow separation on elastic vehicles. 

Both the Saturn-IB and Saturn-V vehicles have alternating regions of attached and 

separated flow, a s  shown in Fig. 1-1. No theoretical method exists for computing the 

unsteady effects of flow separation. However, a quasi-steady analysis technique for 

the computation of the aerodynamic damping of such vehicles, using the static load 

distributions a s  an input, has been developed. 

fully to predict the damping of the Saturn I-Apollo vehicle (Ref. 1). Because of this 
success, the NASA Marshall Space Flight Center has retained the Lockheed Missiles 

& Space Company, in a consultantcapacity , to apply the quasi-steady analysis technique 

to the Saturn -IB and Saturn-V boosters. 

This technique has been used success- 

The quasi-steady analysis may be divided into two steps: (1) preparation of the quasi- 

steady aerodynamic input, i. e. , defining the portions of each loading that a r e  dependent 

on local and upstream conditions; and (2) application of the resulting aerodynamic 

loadings to the equations of motion for an elastic vehicle. The derivation of this 

analytical technique is thoroughly discussed in Ref. 1 and will not be reiterated. 

Rather, an attempt will be made to describe the effects of structural-aerodynamic 

coupling in terms of the underlying physical concepts. 

1-1 
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Section 2 

MECHANICS OF SEPARATED FLOW 

The difficulty in predicting the dynamic effects of flow separation arises from the fact 

that the major separated-flow loading on a submerged body element is the result of 

conditions upstream of the element at the separation source. By examining the 

shadowgraph of Fig. 1-1, one may see that the separated-flow field over the command 

module is generated upstream at the escape rocket. Likewise, the flare separations 

originate on the preceding cylinders at the shock locations. A time lag will, therefore, 

exist between the instant a perturbation of the flow field occurs a t  the separation source 

and the time the resulting flow-field change has been transmitted to the submerged 

body, through the separated region, thereby changing its loading. It is this time lag 

which may cause a phase shift between the static and dynamic effects of separation. 

The forebody-induced loading is of major importance in determining the response of 

a body submerged in separated flow. This loading is deduced from an analysis of the 

static load distribution. The static load distribution also yields the force dependent 
on local attitude and supplies the information needed to subdivide the induced load as 
a function of forebody displacement and forebody attitude. The derivation of the 

various steady and quasi-steady aerodynamic derivatives is discussed in detail in 

Ref. 1. A brief summary of their salient features is given in the following sections. 

2.1 SEPARATED-FLOW AERODYNAMICS 

When extracting the forebody and local crossflow-dependent derivatives from the 

static data, the concept of a velocity deficit is used. The data shown in Fig. 2-1 

indicate that, at CY = 0" , there is an increase in the normal force derivative and a 

2-1 
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reduction in the forebody axial force of the submerged body. The reduced axial force 

is a measure of the reduced average dynamic pressure within the wake, which can be 

expressed as 

where s refers to separated flow and a refers to attached flow. 

The local attitude derivative CN 

tive CN 

may be estimated from the attached flow deriva- 

S 
(Y 

by the following relation 
@a 

The remainder of the submerged-body load is an induced load expressed by 

AiCN = CN - 'N 
"T "S  

a 

is the measured total derivative. i 
N where A CN is the induced derivative and C 
"T cy 
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i 
From Fig. 2-2, it is evident that the induced load on the command module ( A  CN ) 

has two components. One component is a function of the relative displacement angle 

F = Z/L , while the other is a function of the escape rocket attitude 8 

may write the induced load as 

CY 

Thus, we N '  

AiCN = AiCN + A i CN 

P eN a! 

For regions of shock-induced separation, the induced load on the submerged frustum 
i is a function of forebody crossflow only, i. e. , A C = AiC and AiC = 0. 

Na! * e  NP 

This may be seen by examining Fig. 2-3. Crossflow over the attached flow portion of 
the cylinder ( w  = Urn aac , which is effectively lumped at  the attached flow center of 

pressure xac ) causes the windward boundary layer to thin and the leeward boundary 

layer to thicken (Fig. 2-3a). This action produces the differential shock locations on 

the cylinder, since the shock location relative to the frustum is a direct function of 

the boundary-layer thickness at separation (Ref. 2). Thus, crossflow boundary-layer 

at the shock location and a positive effects produce a negative cylinder load ( AiC 

flare load at  the reattachment zone (A C N ~  ) . The remainder of the induced frustum 

load is caused by crossflow at the shocks ( ac  ) . This crossflow changes the relative 

windward and leeward shock strengths (Fig. 2-3b) and produces the induced derivative 

Nc ) i 

AiCN . 
2 

The boundary-layer thickening phenomenon discussed above is illustrated by the shadow- 

graphs in Fig. 2-4. 

boundary-layer trip, under the same conditions. In both cases ,  the boundary layer ' is  

turbulent. 

of the separation point as shown. 

Two identical configurations were tested, with and without a 

The trip serves to thicken the boundary layer,  causing a forward movement 

2 -4 
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a. Nondirecting Wake Source 

NON DIRECT I NG 

b. Directing Wake Source 

Fig. 2-2 Comparison of Nondirecting and Directing Wake- 
Source Configurations 
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Fig. 2-3 Shock-Induced Loads 
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Fig. 2-4 Effect of Boundary-Layer Thickening on Shock Position 
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2 . 2  QUASI-STEADY LOADS 

Quasi-steady loads a re  static loads modified for slow variations from the static condi- 

tion. 

as illustrated in Fig. 2-5a. At time t , the wake-source deflection is Z(t) ;  however, 

the load applied to the submerged body at this time was generated at an earlier time, 

t - A t .  The wake-source deflection at time t - A t  was Z( t - A t ) .  Thus, the quasi- 

steady force, which is dependent on forebody displacement, is expressed as 

This modification incorporates time dependence into the expression for the loads, 

A i c N ( z ) Q s  = Z ( t - A t )  (2.4) 

where 

a c ~  = Z A C  1 i and At  = L / 6  
* P  a z  

Likewise, Fig. 2-5b shows that the quasi-steady force dependent on €orebody attitude 

is 

ON(t - A t )  AiCN ( = - a cN 

a eN 

The quasi-steady force dependent on local attitude is 

where 8 and Z a r e  the local attitude and the translatory velocity of the submerged 

body. 
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I eN 

Directing Wake Source 

Fig. 2-5 Quasi-Steady Wake-Source Flow Models 
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The total quasi-steady load on the command module is the sum of the three loads 

described by Eqs. (2.4), (2 .5) ,  and (2.6).  

The average velocity e in the expression for the time lag (At = L / u )  is derived 

from the dynamic pressure ratio 

The quasi-steady, shock-induced load is made up of two components, one dependent 

upon the crossflow on the cylinder forward of the shocks and the other dependent upon 

the crossflow at the shock location (Fig. 2-6).  These loads may be expressed as 

AiCN(Ol)Qs = C a! ac ( t  - A t l  - At2) (2.8) 
Nel 

x - x  - ac c 
0 . 8  Uw Atl - 

[ O .  8 Urn is the convection velocity in  a turbulent boundary layer (Ref. 

x - x  At2 - - c s  
0 and 

[ fi is obtained from the axial force ratio on the flare, Eq. ( 2 . 7 )  .] 
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a. Effect of Crossflow Forward of Shock Location 
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b. Effect of Crossflow at Shock Location 

Fig. 2-6 Quasi-Steady Shock-Induced Separation Flow Model 
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Section 3 

SATURN-APOLLO ANALYSIS 

The computation of the aerodynamic damping for the Saturn-IB and Saturn-V booster 

vehicles was performed applying the quasi-steady analysis technique described in 

Ref. 1. Figure 3-1, which is taken from Ref. 1, illustrates the degree of agreement 

obtained between data computed by this method and the experimental data (Ref. 4) for 

an early Saturn-I configuration.* The quasi-steady predictions vary slightly (well 

within the scatter of the experimental data) from those presented in Ref. 1. This is 

due to a more accurate representation of the command module center of pressure, as 
discussed later. 

The static load distributions over the Saturn-IB and Saturn-V vehicles were obtained 

through the analysis of all pertinent, currently available data (Refs. 5 through 27). 

The distributions were reduced to lumped-force derivatives and partitioned into local 

and induced components. These data are documented for  cy = 0" in Appendices C and 

D for the Saturn-IB and Saturn-V vehicles, respectively. The velocity ratios ased in 

the time lag computations are also included in the appendices. These data were then 

applied to the equations of motion for the elastic vehicle. A single-degree-of-freedom 
analysis was performed using the t = 60 sec bending-mode shapes of the Saturn-IB 

and the Saturn-V vehicles (Refs. 28 and 29).** The analysis was performed for the 

Mach number range of 0.8 5 M 5 2.0 , i. e. , for the high-dynamic-pressure portion 

of the vehicle trajectories (Refs. 30 and 31). The results of the analysis are dis- 
cussed in the following paragraphs. 

*The quasi-steady technique assumes that the vehicle oscillates with its natural free-free 
bending frequency. Results obtained for the first mode of the Saturn-IB [using a 
nominal value of 1 percent of critical for the structural damping coefficient (Ref. 28)] 
indicate a maximum deviation from the natural frequency of 2 . 5  percent. 

a maximum deviation of 5 percent from the damping value computed using the 
t = 60 sec mode shapes. 

**Results obtained on the Saturn-V vehicle using the t = 80 sec mode shapes indicate 
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Fig. 3-1 Aerodynamic Damping at a! = 0" of the Saturn I - A ~ l l o  
Vehicle with Escape Rocket (Disk Off) 
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3 . 1  STATIC AERODYNAMIC ANALYSIS 

Like the Saturn-I vehicle, the Apollo payload is responsible for the major effects of 
flow separation for both the Saturn-IB and Saturn-V vehicles. 

represents the most prominent single region of flow separation (Fig. 1-1). Further- 

more, the modal deflections and mode slopes are large on the forward portion of the 

vehicle; and the large separation-induced load on the Apollo payload has a very signi- 

ficant effect on the vehicle damping. The major portion of the analytical and experi- 

mental effort was expended in obtaining the loading over the Apollo-payload portion of 

the vehicles. 

The escape-rocket wake 

The static load distribution, key to the quasi-steady loads, is normally obtained from 
pressure distribution data. However, when regions of shock-induced separation occur, 

it is impossible to define the narrow, shock-induced negative loadings from pressure 

data alone. Therefore, segmented force data (Refs. 5 and 6) were used in conjunction 

with the pressure data; and the magnitudes of the ill-defined, negative load peaks were 

varied until agreement with the force data was obtained for both normal force and 

center of pressure. Figures 3-2 and 3-3 show the type of agreement finally obtained 

for local body elements. A constant bias exists for the center of pressure location 

on the interstage frustum between the service module and the S-IVB stage. This bias 

results from the axial force moment, on the frustum, that is not accounted for in the 

reduction of the pressure data. 

The pressure data used in the analysis of the forebody loads (Ref. 7) were  measured 

on a model that had a rod passing through the tower structure to support the escape 

rocket. This rod* is visible in the shadowgraph (Fig. 1- 1). Component force data 

were obtained with and without the rod to determine if the rod restricted the wake 

movement (Refs. 5, 6, and 8). The data from Figs. 3-2 through 3-4 indicate no wake 

steering effects, These data do serve, however, to modify the representation of the 

command module center of pressure (Fig. 3-4) relative to that used on the Saturn-I 

*Rod diameter/escape rocket diameter = 0 . 7 7 7 .  
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(Refs. 32 and 33). Excellent agreement between the summed, lumped force distribution 

for  the Saturn-IB and Saturn-V vehicles (Fig. 3-5) and the overall force data is shown 

in Figs. 3-6 and 3-7,  respectively. 

3 . 2  AERODYNAMIC DAMPING ANALYSIS 

In the quasi-steady analysis technique, an equivalent damping derivative is computed 

for each lumped force. These damping derivatives are multiplied by ( - pUoo S/4 a;) 
to give the local damping contribution as a fraction of critical damping. The sum of 

these contributions gives the total damping. A damping distribution can be developed 

from the damping vectors. Like the static load distribution, the damping distribution 

indicates which loads contribute favorably and unfavorably to the dynamic stability, 

aeroelastic stability in this case. However, the damping distribution is dependent on 
Mach number; and it changes with mode shape as the nodes, deflections, and slopes vary. 

The damping derived through virtual work considerations is directly proportional to 

the displacement of the local body element.* Thus, the nose of a bending body has a 
disproportionately large damping influence, since the relative deflections are usually 

largest there. 

All these factors come into play in the correlation of the damping distribution with the 

static loads. Figure 3-8 compares the static load and aerodynamic damping distribu- 

tions for the first three modes of the Saturn IB. The effects of mode-shape changes 

are striking and become apparent even on the most casual inspection. The effect of 

relative displacement is manifested by the large contribution from the small escape- 
rocket-nose load to the damping in all three modes. Detailed consideration of the 

first-mode damping distribution reveals many of the structural-aerodynamic coupling 

effects. The large command-module damping is the combined result of the large 

relative deflection between the escape rocket and command module and the large local 
deflection at the command module. The damping loads get progressively smaller 

further aft as the node is approached. The frustum load is partially positive and par- 

tially negative, since a node occurs at the frustum. This node location changes the 

sign of the separation-induced, aft-frustum damping, The same is true for the third 

*This relationship holds true for regions of separated flow as well as for attached flow. 
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mode. The entire frustum load produces damping for the second mode because the 

relevant node occurs aft of the frustum. Returning to the command module, the damp- 

ing contributions to the second and third modes are small. Second mode damping is 

minimized by the opposite effects of deflection and wake steering, and third mode damp- 

ing is limited because of small mode slopes and relative deflections. Tail barrel  damp- 

ing is small for all modes, because of the small local deflections. 

Two representations of the aft S-IVB stage loads are shown in Fig. 3-8. The loading 

indicated by the phantom line represents the fairing used in Ref. 9 ,  while the solid 

line represents the data points presented therein. The authors have elected to believe 

the data points, assuming that they represent the loads in a local separated region 

caused by terminal normal shocks. The opposite signs of the damping contributions 

for these two representations reflect the separated-flow interpretation of the latter 

fairing. In the first and third modes, the total effect of either fairing is about the 

same, since the loads oppose one another and also are small due to small local de- 
flections. In the second mode, the separated-flow fairing gives appreciable negative 

damping. The forward negative shock-induced load occurs at a node, producing zero 

damping, while the positive load occurs aft of the node producing undamping. The 

resultant damping is, therefore, negative. The results of both representations a re  

shown in Fig. 3-9. 

In comparing the Saturn-IB and Saturn-V damping with the Saturn-I results (Fig. 3-9), 

certain differences in the trends of the data become apparent. 
differences in mode shape and external configuration. For  example, at subsonic 

Mach numbers, the Saturn-IB and Saturn-V vehicles show a sudden increase in their 

first mode damping relative to the Saturn-I vehicle. Figure 3-10 indicates that this 

can be explained by the differences in the damping contribution from the interstage 

frustum between the service module and the S-IVB stage. Figure 3-11 further supports 

this conclusion. This figure shows that if the cylinder-flare damping were zero, a s  

it is for the Saturn-I, the Saturn-IB and Saturn-V damping would have the same trends 

as the Saturn-I damping. 

They are  explained by 
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For the third mode (Fig. 3-9), a major difference in trend occurs at supersonic Mach 

numbers. This is entirely due to mode shape differences, since the responsible loads - 

the command module and shoulder loads - are the same statically for all three config- 

urations. The relatively larger contribution to the Saturn-I damping occurs because of 

larger modal slopes and deflections at the escape rocket, resulting in larger separa- 

tion induced damping (Fig. 3-12). The differences in the "noninduced" command 

module displacement effects between the Saturn I and IB are small due to small local 

displacements. The Saturn-V damping is nearly zero because of the node location on 

the command module. 

In Figs. 3-13 and 3-14, the damping characteristics of the Saturn-IB and Saturn-V 

vehicles at 4- and 8-deg angles-of-attack are compared with the damping character- 

istics at a O-deg angle-of-attack, There appears to be little change in the overall 

vehicle damping with angle-of-attack. This is to be expected, since the various op- 

posing positive and negative, separation-induced loads decrease proportionately with 

increasing angle-of - attack. 

In quasi-steady analysis, it has been shown that each separation-induced damping 

component is related directly to its static counterpart. It is obvious, then, that this 

technique can be used to discover the cause of any overall vehicle undamping and to 

suggest possible fixes, 
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Fig. 3-2 Saturn-IB and Saturn-V Service Module Loads at (Y = 0' 
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Fig. 3-6 Comparison of Saturn-IB Integrated Lumped Loads with 
Force Data Results at CY = 0" 
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Section 4 

CONCLUSIONS 

Application of the quasi-steady analysis technique to th unch vehicles, 

which are  aerodynamically dominated by separated flow, has shown that: 

Quasi-steady predictions of the aerodynamic damping for the Saturn-I 

vehicle agree well with experimental aeroelastic data. 

The damping characteristics of the various Saturn configurations may be 

correlated using quasi-steady theory. 
0 In the critical Mach number range (0.8 5 M 5 2.0) ,  quasi-steady theory 

predicts that the first three bending modes of the Saturn-IB and Saturn-V 

vehicles a re  aerodynamically damped. 

It may, therefore, be confidently concluded that both the Saturn-IB and Saturn-V 

vehicles will have positive aerodynamic damping throughout their atmospheric ascent. 
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Section 5 

RECOMMENDATIONS FOR FURTHER STUDY 

The flow field over the Saturn-Apollo vehicles is very complex and many of the separa- 

separation-induced loads still defy rigorous definition. As was indicated in Ref. 1, 

the analytical partitioning into local and induced components of both the negative 

shoulder loads and the shock-induced flare loads needs to be improved. This may 

be facilitated by correlating the quasi-steady results with experimentally determined 

damping values for simpler wind tunnel model configurations that do not have a multi- 

tude of separated-flow regions. Coupled with this work, a basic investigation of the 

effects of angle-of-attack on shock-induced separation should provide a better and 

more sophisticated representation of shock-induced unsteady loads. 

The above investigations should also shed some light on the effect of flare crossflow 

and attitude on tne snocK-inuuceu ~ e p ~ & ~ ~ ~  upoll.u,LuII ,f 
stream effect of the command module on the shock-induced separation at the escape- 

rocket flare may exist. This effect could be resolved by quasi-steady wake-source 

tests, somewhat more sophisticated than those proposed in Ref. 1. In addition to 

driving the wake source harmonically in the pertinent modes of motion and measuring 

the response of the command module, the command module must also be driven, and 

the response of the escape rocket must be measured as  well as the unsteady forces on 

the command module. 

EL-:. -"- ziz-i?-.- y- 

Finally, further work is needed to make the computer program described in Ref. 1 

more reliable and more versatile. Paradoxically, increased reliability can be gained 

only through sacrifices, however small, in accuracy. 

ting routines, the amount of input needed can be reduced drastically, leaving less room 
for the %ard-ko-catchff random human error.  In order to facilitate fast discovery of 

the e r r o r s  that still may slip through, all the input data used in the computations could 

By extensive use of curve fit- 
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be displayed graphically using the General Dynamics/Electronics SC-4020 cathode- 

ray plotter. (Note: The plots should show the input data as computed by the curve 

fitting routines, i. e. , show the data curves actually used in the computations. ) There 

is a need for built-in options in the computer program that will allow dual (extreme) 

representations of loads that, for various reasons, a r e  not uniquely defined. This 

feature will be particularly valuable in the analysis of new , ffpreliminary design" 

configurations. 
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Appendix A 

NOTA TION 

2 force coefficient = Force/po, (U, /2)  S 

reference length (6.5278 m for Saturn-IB and 10.0584 m for Saturn-V) 

equivalent damping derivative = ( Ca/Cc) [ (  -pUW S/4w E) 
longitudinal distance ( m ) 
Mach number 

generalized mass ( kg - sec / m )  
2 pressure (kg/m ) 

dynamic pressure (kg/m ) 
2 

average dynamic pressure ( kg/m ) 
2 2 reference area = "DREF/4 ( m  ) 

time (sec) 

velocity ( m/ sec ) 

average velocity ( m/ sec ) 
longitudinal coordinate (m) 
vertical displacement ( m ) 
angle of attack (deg or radian) 

equivalent spike deflection angle ( deg or  radian ) 

incremental unit, e. g. , At = increment of time 

density ( kg-sec / m  ) 

free-free bending frequence ( radian/ sec ) 

aerodynamic damping 

critical damping 

rotation angle (deg or  radian) 

2 

2 

2 4  

Subs c r ipts 

A axial force 

a attached flow 
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Subscripts (Cont'd) 

ac 

C 

L 
m 

N 

0 

QS 
S 

T 
W 

1 

2 

00 

aerodynamic center 

denotes shock location on cylinder 

leeward 

pitching moment 

normal force o r  nose 

at (Y = 0" 

quas i-s te ady 
separated flow 

total 

windward 

denotes conditions on attached flow cylinder 
denotes condition at shock location 

undisturbed flow 

Superscripts 

i i induced, e. g., A CN = separation induced normal force 
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Appendix B 

ANALYSIS OF THE SATURN-I (SA-8 AND SA-9) CONFIGURATION 

At the request of the NASA Marshall Space Flight Center, an additional Saturn - 
Apollo configuration (for Flights SA-8 and SA-9) was analyzed along with the Saturn-IB 

and Saturn-V configurations. This configuration is shown in Fig. B-1. The mode 

shapes were obtained from Ref. 34, and the previous Saturn4 trajectory (Ref. 35) was 

assumed. 

Ref. 1 amounted to a shortening of the service module by 0.077 calibers. The major 

effect of the configuration change was to alter the load on the interstage frustum 

between the service module and the S-IV stage. The data from Refs. 5 and 6 were 

used to adjust for cylinder length. The new frustum load is compared to that of the 

previous Saturn-I configuration in Fig. B-2. The switch in the trend of the data 

between subsonic and supersonic Mach numbers is the result of critical cylinder 

length effects (Ref. 36). 

figuration is aerodynamically damped at (Y = 0' over the critical Mach number range 

(0.8 5 M f 2.0) .  

The configuration change relative to the "current flight configuration" of 

Figure B-3 indicates that the Saturn-I (SA-8 and SA-9) con- 
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Appendix C 

DOCUMENTATION O F  SATURN-IB LUMPED LOADS 

The CY = 0" , lumped load representation used in computing the Saturn-IB damping is 
documented in this Appendix. Figure C-1 relates the lumped loads to the general 

Saturn-IB force distribution. Both local and induced lumped loads are plotted in Figs. 

C-2 through C-4, and their centers of pressure appear in Fig. C-5. Figure C-6 pre- 

sents the local and induced axial force moments on the command module and interstage 

flares, and Fig. C-7 shows the velocity ratios for each of the separated regions. 

c-1 

LOCKHEED MISSILES & SPACE COMPANY 



M-37-65-1 1 I 

- 1  

I, 

w 
0 

M 
.d 

R 



M-3 7 - 6 5- 1 

e 
Z 
L n 
3 
'a 
Z 

U 

: c 

pc 
W n 
W 

Y 
0 
LL. 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

FOREBODY DISPLACEMENT 

0.8 1 .o 1.2 1.4 

hACH NUMBER 

1.6 1.8 

Fig C-2 Saturn-IB Local and Forebody-Dependent 
Command Module Loads at  (Y = 0" 

2.0 

L O C K H E E D  MISSILES & SPACE COMPANY 

c-3 



M-37-65-1 

0.4 

0 

-0.4 

1.2 

0.8 

0.4 

0 

-0.4 

-0.8 
0.8 1 .o 1.2 1.4 1.6 

MACH NUMBER 

Fig. C - 3  Saturn-IB Local Normal Force 
Derivatives at (Y = 0" 

c -4 

1.8 2.0 

LOCKHEED MISSILES & SPACE COMPANY 



M-37-65-1 

? 
6 

6 
- 
n 

bY) * Z 

w > 

4.0 

3.6 

3.2 

2.8 

2.4 

0.4 

0 

-0.4 

0.8 1 .o 1.2 1.4 1.6 1.8 2.0 

MACH NUMBER 

Fig C-3 Saturn-IB Local Normal Force 
Derivatives at cy = 0" (cont. ) 

c-5 

LOCKHEED MISSILES & SPACE COMPANY 



M-37-65-1 

0.4 

0 

-0.4 

1.2 

0.8 

0.4 

0 

-0.4 

-0.8 

.-. ~, . 
17,18,23, AND 2 4 i F I N S j  ARE 

0.8 1 .o 1.2 1.4 1.6 
MACH NUMBER 

Fig. C-4 Saturn-IB Induced Normal Force 
Derivatives at a 0” 

C-G 

1.8 2.0 

MISS I LES & SPACE COMPA N Y  



I -  

9 
c- 

0 
hl 



M-37-65-1 

0 0 
9 t 

3131HW 

w 
t 

Fig. C-5 Saturn-IB Lumped Load Centers of 
Pressure at (Y = 0" 

c- 7 



M-37-65-1 

z' : 
0 c 
w iT 

0 

-0.04 

-0.08 

-0.12 
0 

-0.04 

-0.08 

-0.12 
0.8 1 .o 1.2 1.4 1.6 

MACH NUMBER 

Fig. C-6 Saturn-IB Local and Induced Command Module 
and Flare Axial Force Moment Derivatives 
at o! = 0 "  

c-9 

1.8 2.0 

LOCKHEED MISSILES & SPACE COMPANY 



M-37-65-1 

2.4 

2.0 

1.6 

1.2 

0.8 

0.4 

0 

ESCAPE ROCKET WAKE 

1ST STAGE TAIL 
FLARE SEPARATION 

---- 

0.8 1 .o 

Fig. 

LOCK 

c-7 

1.2 1.4 1.6 

M A C H  NUMBER 

Saturn-IB Separated-Flow Velocity 
Ratios at a = 0 "  

1.8 2.0 

c-10 

HEE 

__ 

D MISSILES & SPACE COMPANY 



M-37-65-1 

I 

Appendix D 

DOCUMENTATION OF SATURN-V LUMPED LOADS 

The (Y = 0' , lumped load representation used in computing the Saturn-V damping is 

documented in this Appendix. 

Saturn-V force distribution. Both local and induced lumped loads are plotted in Figs. 

D-2 through D-4, and their centers of pressure appear in  Fig. D-6. Figure D-5 pre- 

sents the local and induced axial force moments on the command module and interstage 
flares,  and Fig. D-7 shows the velocity ratios 

Figure D-1 relates the lumped loads to the general 

for each of the separated regions. 
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